

Mathematisch-Naturwissenschaftliche Fakultät

Programmiersprachen und Softwaretechnik

Prof. Klaus Ostermann

Leitung des Seminars David Binder Ingo Skupin

Kategorientheorie für Programmierer

Hausaufgabenblatt 4 - SS18

Tübingen, 23. Mai 2018

Aufgabe 1: Lektüre

Für die nächste Sitzung lesen Sie bitte Kapitel 10, 12 und 13 und schicken Ihre Fragen bis Dienstag Abend (also Dienstag, der 5.Juni) an uns.

Aufgabe 2: Natürliche Transformationen – Ein Beispiel

Gegeben sind folgende Definitionen für einen generischen Binärbaum:

```
data Tree a = Empty | Node a (Tree a) (Tree a)
instance Functor Tree where
  fmap _ Empty = Empty
  fmap f (Node a | r) = Node (f a) (fmap f | ) (fmap f r)

flatten :: Tree a -> [a]
flatten Empty = []
flatten (Node a | r) = a : (flatten | ++ flatten r)
```

Zeigen Sie, dass flatten eine natürliche Transformation vom Baum- zum Listenfunktor ist (*Hinweis*: Induktion). Sie können dabei annehmen, dass $fmap\ f\ (xs\ ++\ ys) = fmap\ f\ xs\ ++\ fmap\ f\ ys$ gilt (mit anderen Worten: (++) ist eine natürliche Transformation von Paaren von Listen zu Listen).

Aufgabe 3: Natürliche Transformationen - Komposition

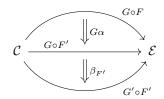
Beweisen Sie, dass die horizontale Komposition von natürlichen Transformationen wieder eine natürliche Transformation ergibt.

Hinweis: Betrachten Sie dazu eine alternative Definition von horizontaler Komposition. Seien dazu \mathcal{C} , \mathcal{D} und \mathcal{E} Kategorien und $F,F'\colon \mathcal{C}\to \mathcal{D}$ sowie $G,G'\colon \mathcal{D}\to \mathcal{E}$ Funktoren. Seien außerdem $\alpha\colon F\Rightarrow F'$ und $\beta\colon G\Rightarrow G'$ natürliche Transformationen.

Nun definieren wir neue natürliche Transformationen $G\alpha\colon G\circ F\Rightarrow G\circ F'$ mit $(G\alpha)_a\coloneqq G\alpha_a$ und $\beta_{F'}\colon G\circ F'\Rightarrow G'\circ F'$ mit $(\beta_{F'})_a\coloneqq \beta_{F'a}$ (diese Operationen werden auch als *Whiskering* bezeichnet). Mit deren Hilfe lässt sich nun eine alternative, äquivalente Version der horizontalen Komposition definieren: $\beta*\alpha:=\beta_{F'}\circ G\alpha$ (dabei ist \ast die horizontale und \circ die vertikale Komposition von natürlichen Transformationen). Aus den angegebenen Schritten ergeben sich folgende Situationen:

sowie

ergeben



Zeigen Sie nun, dass $G\alpha$, $\beta_{F'}$ und somit auch $\beta * \alpha$ natürliche Transformationen sind.

Aufgabe 4: Limits und Colimits

Sei $\mathcal{P}=1 \to 2 \leftarrow 3$ die Startkategorie für Pullbacks und \mathcal{C} eine beliebige Kategorie mit allen Produkten (also auch mit einem Terminalobjekt). Finden Sie einen Funktor $D\colon \mathcal{P} \to \mathcal{C}$, sodass $\lim D = A \times B$ gilt. Oder mit anderen Worten: Zeigen Sie, dass sich Produkte durch Pullbacks definieren lassen.

Finden Sie anschließend eine Möglichkeit, Equalizer durch Pullbacks auszudrücken.

Wie verhält es sich bei Pushouts zusammen mit Coprodukten?

Sei nun $\mathcal{C} = \mathbf{Set}$. Geben Sie für beliebige Mengen A, B und C sowie Funktionen $f \colon A \to C$ und $g \colon B \to C$ an, wie der Pullback dieser Funktionen aussieht.

Geben Sie ebenfalls eine allgemeine Definition des Pushouts für die Funktionen $p: C \to A$ und $q: C \to B$ an.